1. HOME
  2. ブログ
  3. データ分析
  4. データ分析とは?正しい進め方や分析スキルの身につけ方を解説

KUROCO NOTE

データ分析・活用ノウハウや調査報告などを発信しています

データ分析

データ分析とは?正しい進め方や分析スキルの身につけ方を解説

データ分析とは?正しい進め方や分析スキルの身につけ方を解説

IT技術の発達や様々なツールの登場によって、ビジネスにデータ分析を活用することは身近になりました。しかし、そもそもデータ分析とは何か?どのように進めるべきなのか?明確に理解できていない方も多いのではないでしょうか。

そこでこの記事では、データ分析の意味や、取り組むべき理由、正しい進め方を解説します。

データ分析とは

データを集めて整理、編集し、過去から現在までがどういう状況になっているのかを客観的な数値で把握することです。

ビジネスにおいて行うデータ分析の目的は、企業、あるいは事業の売上、利益を上げていくこと。社内に蓄積されているデータは日々の経営活動で得られた結果です。販売実績や取引結果といった経営活動の結果を分析することで売り上げや利益につなげていくことができます。

扱うデータは社内に蓄積されているデータが主ですが、場合によっては競合のデータや市場データ、顧客へのアンケート調査などを扱う場合も多いです。

データ分析に取り組むべき理由

データ分析によって、売上や利益を上げていくことが可能になる主な理由は以下の3つです。

  • 正しく現状を把握することができる
  • 精度の高い予測を立てることができる
  • 素早い意思決定が可能になる

正しく現状を把握することができる

社内に蓄積されているデータは日々の経営活動で得られた結果です。それらを整理し分析することで、現状を正しく把握することができます。また、競合他社のデータや市場のデータとあわせて分析することで、より明確に自社の状況を知ることができます。

現状を正しく把握することができれば、自ずと自社の抱えている課題も明確になり取り組むべき対策なども明確にすることができます。

精度の高い予測を立てることができる

過去のデータを分析することで、規則性や因果関係を洗い出すことができます。その分析結果に基づいて精度の高い予測が可能になります。

現状の課題に対する対策についても、どのような対策を打つべきなのか、その対策を打つとどれくらいの効果が得られるのかなどの予測を立てることも可能になります。

素早い意思決定が可能になる

現状を把握することで課題が明確になり、それに対する戦略や精度の高い予測を立てることができれば、素早い意思決定が可能になります。

どこに課題があるか曖昧なまま闇雲に施策を展開していたり、明確な予測のないまま議論をしていた時よりもより速く課題を解決していくことができます。

正しいデータ分析 5つのステップ

最もよくないデータ分析の取り組み方は「膨大な数値データをとりあえず分析して、そこからわかったことをもとに次の施策を立てたい」といって、目的を決めずにデータ分析に入り、結局は何もわからず、迷路に迷い込んでしまうというパターンです。

そうならないためにも、具体的な課題を見つけ、現時点での仮説とその根拠は何か、仮説を確かめるにはどんな情報を集めてデータ分析する必要があるのかを検討する、以下のような正しいデータ分析の手順を踏むことが大切です。

データ分析の手順

❶ 目的の明確化

「目的」を明確にしておかなければ、データ分析の進め方を間違えてしまい、大幅に遠回りをしてしまう可能性が大いにあり得ます。

逆にいえば、ゴールを定めて、そのゴールに向かって最適なデータ分析をすることができれば、より速く的確な戦略や打ち手を導き出せることになります。

もし最初から明確化することがちょっと難しいのであれば、はじめは「売上減少」などの漠然とした問題でもかまいません(あるいは売上増加といった目的でもかまいません)。徐々に目的を明確にしていけばよいのです。

目的を明確にすればするほど、そのあとの分析もスムーズに進みます。また、目的は具体化したほうが、それに対する打ち手もシンプルでわかりやすいものになります。

❷ 仮説の洗い出し

仮説とは、その言葉の通り「仮の答え」になります。真偽はともかくとして、「ある論点に対する仮の答え」や「わかっていないことに関する仮の答え」です。たとえば「この事業は儲かるはずだ」や「この問題の原因はここにあるに違いない」といったことになります。

データ分析において、どのような場面でも必要になるのが、「仮説を構築すること」です。仮説は、データ分析や数字で検証するための拠り所となるのです。

しかし、仮説をすべて洗い出したら、その数は膨大なものになるでしょう。それらすべてを実行に移すことは、現実的ではありません。そのため、優先順位をつけて絞り込んでいく必要があります。

優先順位をつけるときにおすすめしたいアプローチが、「データ分析をしていくことで、複数の仮説の中から優先順位をつけていき、確度の高い打ち手を絞り込む」という手法です。

たとえば、原因が何かはわからないのですが、「売上減少」という状況が起こり、社員がそれぞれの立場で売上減少の要因を考えた結果、10個の課題仮説が出たとします。本来はこの10個の課題仮説すべてに対して改善していきたいのですが、実際にはすべての仮説に対して人的リソースや時間的リソースをかけることはできません。そこで威力を発揮するのが、問題解決の考え方とデータ分析です。問題解決の考え方をすることで、課題とそれに対する解決策の仮説を洗い出すことができ、その仮説を証明するのは、データ分析になります。

では、具体的にどのように絞り込むかですが、図に示したように、データ分析を行うことで、たくさんの仮説の中から優先順位をつけることができます。

図 複数の仮説の中から優先順位をつける

ロジックツリー

たとえば「客数が減少しているのか、それとも客単価が減少しているのか」がわかれば、10個ある仮説はさらに絞り込めるでしょう。さらに、「客数の減少」が顕著であれば、「新規顧客の減少」「既存顧客のリピート率の減少」など原因と仮説と打ち手を絞り込むことができます。このように、洗い出した仮説に対してより適切に「当たり」をつけていくことができるのがデータ分析なのです。

❸ 分析方法の定義

ここでは、仮説を検証するために、どんな数値データが必要なのか、どのような分析方法を行えばよいのかを整理していきます。

具体的には、現在、自社が持っているデータのほか、あらゆるデータの中から、どのデータを使って分析を行うのかを検討します。

分析方法の定義については、課題や出てきた仮説によってやり方が大きく変わってくるため、❷で洗い出した仮説を検証するために何を分析していく必要があるのかを、抜け漏れなく整理することが、とても重要になります。

❹ 情報(データ)の収集

❸で定義したデータ分析方法に基づいて、必要な情報(使用するデータ)を探していきます。情報収集の方法や集めるデータについては非常に多岐にわたりますが、❸で定義した分析方法を実現させるためのデータを、いかにして集めて整理するかが、大きな鍵になってきます。

❺ 分析

集めた数値データを使った分析を進めていきます。データ分析は、経験の数によってスピードや精度は上がっていきますが、ポイントさえ押さえてしまえば、初心者でも一定の成果を出すことができるのもデータ分析です。

以上の一連の流れでデータ分析を進めていきます。

打ち手の決定

ここまでのデータ分析で自社の現状が明確になったら、その現状を踏まえて、自社のビジネスを成長させるための打ち手を決定していきます。データを分析して終わりではなく、データに基づく打ち手を決定し実行していくことが、本当に成果につながるデータマーケティングです。

例えば、十分な新規顧客が取れていないという分析結果が出たのであれば、「認知・集客不足」が解決すべきポイントとなりますし、店舗によって収益性に差が出ているという分析結果が出たのであれば、「低収益店舗の発生」が改善するポイントとなります。

改善ポイントは1つであるとは限りません。場合によっては3つ、4つ出てくるでしょう。それら出てきた改善ポイントをどう改善していくのかを考えていきます。

参考:正しいデータ分析の手順とは?成果につながる5つのステップ

データ分析のスキルを身につけるコツ

データを分析するスキルを身につける方法はセミナーや本、動画講座、場合によっては大学などで学ぶこともできます。その時により効果的にスキルを身につけるコツをご紹介します。

データに触れる

1つ目はデータに触れることです。どのような媒体で学ぶかにかかわらず、実際にデータに触れて、整理、分析するという体験をしたほうが、データ分析のスキルは身につきやすいです。

これからデータ分析を学ぼうと考えている方は、ぜひデータに触れられる機会のある方法を選びましょう。

実際に仕事をする

2つ目は実際に仕事をすることです。仕事というのはデータ分析に関わるものでなくても構いません。社会人の人であれば目の前の仕事でいいですし、学生の方であればバイトなどでもいいです。

データ分析のスキルを身につけるといっても、知識やノウハウだけを身につけて実際の業務と結びつかなければビジネスに活用することはできません。

働いてみてお客様と接したり、自分の仕事がどのような結果に結びついているかなどを実際に体験することで、ビジネスに活きるデータ分析のスキルを身につけることにつながります。

データ分析で扱う2種類のデータ

データ分析で取り扱うデータは大きく分けて「マスターデータ」と「トランザクションデータ」の2つがあります。

  • マスターデータ・・・基本となるデータ
  • トランザクションデータ・・・取引や行動に関するデータ

基本となるデータ:マスターデータ

マスターデータとは「基本となるデータ」という意味で、名前の通りデータ分析を行ううえでも元となるデータのことです。具体的には顧客情報、商品情報などのデータを指します。

マスターデータの例

  • 顧客情報
    • 顧客ID
    • 名前
    • 年齢
    • 性別
    • 住所 など
  • 商品情報
    • 商品ID
    • 商品名
    • 価格
    • 商品カテゴリ など

取引や行動に関するデータ:トランザクションデータ

トランザクションデータとは「取引データ」という意味で、取引実績や販売実績、顧客の行動履歴などの様々なデータが含まれます。

トランザクションデータの例

  • 販売履歴
    • 販売された商品の商品ID
    • 購入した顧客のユーザーID
    • 販売数量
    • 販売金額
    • 注文日 など
  • 行動履歴
    • サイトへアクセスしたユーザーのID
    • 最初にアクセスしたページ
    • 滞在時間 など

マスターデータとトランザクションデータを紐づけて分析する

マスターデータとトランザクションデータを紐づけていくことでデータ分析を行います。

企業によっては運用しているシステムの中で紐づけが済んでいる場合もありますが、多くの企業では紐づけ自体ができていないため、データを整理して紐づけるとこから行います。

また、もともと蓄積されているデータに加えて、必要なデータを集める場合もあります。例えば、小売業であればその日の気候などによって売上や来客数が変わってくる可能性が高いです。そういった場合に、分析を行ううえで必要であれば天気や気温、降水量といったデータもあわせて収集し、紐づけて行きます。

データ分析の手法

データ分析を行う上で役立つ手法の一部をご紹介します。1つ1つの手法について詳しく理解する必要はありませんが、自身のビジネスに関連しそうなものがあれば、各リンクから具体的な取り組み方などもチェックしてみてください。

RFM分析

RFM分析(Recency frequency monetary analysis)とは顧客分析手法の1つで「一番最近に購入した顧客は誰か」「頻繁に購入する顧客は誰か」「一番お金を使ってくれている顧客は誰か」という3つの側面から顧客をランク付けする分析手法です。

買い方の異なる顧客をランク付けして、それぞれの傾向を分析することで適切なアプローチを行うことができます。

参考:RFM分析とは?具体的なやり方を事例をもとに解説

CPM分析

CPM分析とは、Customer Portfolio Management 分析の略で「購入回数」「購入金額」「最終購入日からの経過日数」によって顧客を分類し、自社の顧客の傾向を分析する手法です。主に、購入回数が少ない顧客をリピーターに育てていくために活用されます。

RFM分析は主に、最近商品を購入した顧客や購入頻度が高い顧客にターゲットを絞って、短期的に売上を伸ばしたい場合に活用される一方、CPM分析は顧客全体を分析して、購入頻度や顧客単価を高め、中長期的に安定して売上を伸ばしていく場合に活用されます。

参考:CPM分析とは?顧客分析でECサイトや店舗のリピート率を高める!

相関分析

相関分析は、2つのデータに関係性があるか明らかにする手法です。データの関係性を調べることで、関係性のある商品をまとめたり、意外な商品の関係性が見つけたりすることができます。

参考:相関分析とは?エクセルを使った具体的な分析手順を解説

バスケット分析

バスケット分析とは、顧客がどのような商品を併売しているのかを分析する手法です。買い物かご(バスケット)の中にどのような商品が一緒に入っているのかを分析することから、バスケット分析と呼ばれます。

バスケット分析は主に「客単価」を高めるために用いられます。既存顧客の併売傾向を分析することで、併売を促す効果的な施策を立案し、1人当たりの購入金額を高めることを目指します。

参考:バスケット分析とは?商品分析でECサイトや店舗の客単価を高める!

売上・利益を伸ばすデータ活用 3つの事例

この資料では、私たちが様々な業態の企業に対して行ってきたデータマーケティングの結果や、実際に行っているデータ分析のノウハウをご紹介します。是非参考にしてみてください。

関連記事